Quadratics	Functions	Review
Quadratics	i unctions	INCVICV

Name:	_
-------	---

Factoring:

When factoring we want to find numbers that_____

that also _____

Example: $x^2 - 2x - 8$

()()

Factor the following quadratics:

1.
$$x^2 + 8x + 12$$

2.
$$x^2 - x - 12$$

()()

()()

$$3 x^2 + 6x - 16$$

4.
$$x^2 + 8x + 15$$

()()

()()

5.
$$x^2 - 11x + 24$$

6.
$$x^2 + 5x - 14$$

()(

()()

Complete the Square:

When completing the square we want to_____

Next we want to.______.

Example: $y = x^2 - 12x + 28$

 $)^{2}$

Complete the square for the following quadratics:

1.
$$y = x^2 + 12x + 20$$

$$2. y = x^2 + 8x + 16$$

2.
$$y = x^2 - 10x - 15$$

4.
$$y = x^2 - 18x + 80$$

5.
$$y = x^2 + 4x + 3$$

6.
$$y = x^2 - 16x + 200$$

($)^2$ _____ ($)^2$ _____ Vertex Form: We can describe transformations given the vertex form equation by

using the following rules.

$$- a (x - h)^2 + k$$

LOS:
$$x =$$

State the transformations given the following quadratics:

1.
$$y = -2(x-1)^2 + 1$$

2.
$$y = .25 (x + 3)^2 - 5$$

3.
$$y = -(x+6)^2 + 4$$

4.
$$y = 3(x-1)^2 - 2$$

5.
$$y = .5x^2 - 7$$

6.
$$y = -(x+4)^2$$

Write the equation of the quadratic where the parent function has been translated:

- 1. Up 3, Left 6, Reflected over the x-axis:
- 2. Vertical Stretch by 5, Down 6, Right 2: _____
- 3. Left 2, Reflect over the x-axis, Up 4: _____
- 4. Vertical Shrink of .75, Reflect over the x-axis, Up 7: _____

State the vertex and line of symmetry of the following:

1.
$$y = -2(x-1)^2 + 1$$

2.
$$y = .25(x+3)^2 - 5$$

Vertex:_____ LOS:____

Vertex:_____LOS:____

3.
$$y = -(x+6)^2 + 4$$

4.
$$y = 3(x-1)^2 - 2$$

Vertex:_____LOS:____

Vertex:_____LOS:____

5.
$$y = .5x^2 - 7$$

6.
$$y = -(x+4)^2$$

Vertex:_____LOS:____

Vertex:_____LOS:____

Graphing Quadratics: We can determine a quadratic function easily by looking at a graph!

Quadratic Functions in Vertex Form:

First we want to identify the location of the vertex (______)!

When putting it in the equation don't forget to______.

Next we want to determine if there have been any_____!

We can do this by_____

Lastly, check for ______by looking to see if your graph is _____.

State the quadratic function for the following in Vertex Form:

1.

2.

3.

4.

(

)2 ____

(

)² ____

Quadratic Functions in Factored Form:

First we want to identify where the function _____!

When putting it in factored form don't forget to______.

Next we want to determine if there have been any_____!

We can do this by_____

Lastly, check for ______by looking to see if your graph is _____.

State the quadratic function for the following in Vertex Form:

1.

(

)(

)

3.

)(

2.

)(

4.

)(