Unit 5 - Solving Quadratic Functions

Now that we know how to work with quadratics, we can solve them! What does it mean when we solve a quadratic? What are we looking for?

Since we have quadratics we should be looking for \qquad solutions!

We can write our solutions as ordered pairs. $(\#, 0)(\#, 0)$ or as \qquad .

Solving Methods:
-Factoring/Zero Product Property
-Square Root Method
-Quadratic Formula
Today we will talk through helping us find the best strategy depending on the quadratics we are given.

Part 1- Factoring (Zero Product Property) Method: If quadratics are factored, or if we can feel confident in our ability to factor a given problem, this method can be super easy!

All we need to do is \qquad and solve for x !

1. $(x-2)(x+4)$
2. $(2 x-3)(x-5)$
3. $x(3 x+2)$
4. $(x+12)(x-6)$
5. $(x-7)(2 x-5)$
6. $x(x+9)$
7. $(x+5)(x-15)$
8. $(x-3)(x-8)$
9. $(x+6)(x+3)$

In order to solve using the remaining methods we need to recall:
Simplifying Radicals:
When simplifying radicals it is important that we make \qquad .

We want to look for \qquad .

Anything left \qquad .

If multiple numbers are present in either location we must \qquad .

Remember, negatives under the radical mean that we have \qquad .

Simplify the following radicals completely.

1. $\sqrt{250}$
2. $\sqrt{48}$
3. $\sqrt{-16}$
4. $\sqrt{216}$
5. $\sqrt{45}$
6. $\sqrt{-98}$
7. $\sqrt{-169}$
8. $\sqrt{200}$

Part 2- Square Root Method: If quadratics are in \qquad , (or
that we find confident putting it in this form) or a quadratic is \qquad _, this is the best method!

1. $(x+3)^{2}+2=-10$
2. $2(x+2)^{2}+24$
3. $5 x^{2}-1=9$
4. $(x-4)^{2}-13=0$
5. $5-3 x^{2}=20$
6. $x^{2}-49$
7. $x^{2}+100$
$9.5 x^{2}+9=134$
8. $2(x+3)^{2}+12=4$
9. $2 x^{2}+8=10$

Part 3- The Quadratic Formula: If quadratics have an a-value that is bigger than one, or we do not know how to approach in solving, the quadratic formula can always work!

State the Quadratic Formula:
To help you remember, you could sing our song... or think about this story! "There once was a negative boy who was unsure if he wanted to go to a radical party. But the boy was feeling squared and missed out on four a wesome chicks! The party was not over until 2 am!

$$
x=
$$

Solving using the Quadratic Formula:

1. $x^{2}+16 x+68=0$
$\mathrm{a}=$ \qquad $b=$ \qquad
2. $x^{2}-8 x+24=0$
$\mathrm{a}=$ \qquad $b=$ \qquad
3. $6 x^{2}+2 x+1=0$
$\mathrm{a}=$ \qquad $b=$ \qquad
 -
4. $2 x^{2}-7 x+6=0$
$\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{c}=$
5. $2 x^{2}-32=0$
\qquad
6. $x^{2}+5 x-6=0$
$\mathrm{a}=\ldots \mathrm{b}=\ldots \quad \mathrm{c}=$

Calculator Strategies:

- We can also try to use our calculator while testing to help us find solutions!
- Use your table! We want to look for \qquad !
- Careful: Not all answers can be seen from the table.

Example: $x^{2}-x-6$
Solutions: \qquad

- Trace Feature: We can trace in our calculators to find where the x-intercepts are. We can then use those values to match- up our answer choices.
- Steps:
- $2^{\text {nd }} \rightarrow$ Trace
- Zero
- Left Bound, Right Bound, Enter!

Example: $3 x^{2}-5 x-15$

Solutions: \qquad
Types of solutions: We can look at our graph as well as the \qquad of a quadratic to tell us the types of solutions! Let's take a look to see how this works!

Let's start with graphs:

Let's look at Discriminants! (Fancy way of using what we have in the quadratic formula!)

We will use: \qquad

1. $\mathrm{y}=3 x^{2}-3 x+2$	Discriminant	Type of Solution
2. $\mathrm{y}=x^{2}-10 x+1$		
3. $\mathrm{y}=2 x^{2}-16 x+24$		
4. $\mathrm{y}=x^{2}+4 x+17$		
5. $\mathrm{y}=x^{2}+2 x-6$		
6. $\mathrm{y}=2 x^{2}-x-3$		

