Unit 5 – Solving Quadratic Functions

Now that we know how to work with quadratics, we can solve them! What does it mean when we solve a quadratic? What are we looking for?

Since we have quadratics we should be looking for ______solutions!

We can write our solutions as ordered pairs. (#, 0) (#,0) or as _____

Solving Methods:

-Factoring/Zero Product Property

-Square Root Method

-Quadratic Formula

Today we will talk through helping us find the best strategy depending on the quadratics we are given.

<u>**Part 1- Factoring (Zero Product Property) Method:**</u> If quadratics are factored, or if we can feel confident in our ability to factor a given problem, this method can be super easy!

All we need to do is		and solve for x!
1. $(x-2)(x+4)$	2. $(2x - 3)(x - 5)$	3. x (3x +2)
4. $(x + 12) (x - 6)$	5. (x – 7) (2x – 5)	6. x(x+9)
7. $(x+5)(x-15)$	8. $(x-3)(x-8)$	9. (x+6)(x+3)

In order to solve using the remaining methods we need to recall:

Simplifying Radicals: When simplifying radicals it is important that we make					
We want to look for					
Anything left					·
If multiple numbers are p	present in either location v	ve mus	st		·
Remember, negatives under the radical mean that we have					·
Simplify the following radicals completely.					
1. \sqrt{250}	$2.\sqrt{48}$	3.	$\sqrt{-16}$	4. √ <u>216</u>	
5. $\sqrt{45}$	6. √ − 98	7.	$\sqrt{-169}$	8. √ 200	
Part 2- Square Root Method: If quadratics are in, (or					
that we find confident putting it in this form) or a quadratic is, this is the best method!					

1. $(x+3)^2 + 2 = -10$ 2. $2(x+2)^2 + 24$

3.
$$5x^2 - 1 = 9$$

4. $(x - 4)^2 - 13 = 0$

5. $5 - 3x^2 = 20$ 6. $x^2 - 49$

7. $x^2 + 100$ 8. $2(x+3)^2 + 12 = 4$

$$9.5x^2 + 9 = 134 10.2x^2 + 8 = 10$$

<u>Part 3- The Quadratic Formula:</u> If quadratics have an a-value that is bigger than one, or we do not know how to approach in solving, the quadratic formula can always work!

State the Quadratic Formula:

To help you remember, you could sing our song... or think about this story! "There once was a <u>negative</u> **b**oy who was <u>unsure</u> if he wanted to go to <u>a radical party</u>. But the **b**oy was feeling <u>squared</u> and <u>missed out</u> on <u>four</u> **a**wesome **c**hicks! The party was not <u>over until</u> **2 a**m!

x = ——

Solving using the Quadratic Formula:	
$1. x^2 + 16x + 68 = 0$	2. $2x^2 - 7x + 6 = 0$

a= ____ b=____ c=____

a=_____b=_____c=____

3.
$$x^2 - 8x + 24 = 0$$
 4. $2x^2 - 32 = 0$

a= ____ b=___ c=___

a= ____ b=____ c=____

5. $6x^2 + 2x + 1 = 0$

6. $x^2 + 5x - 6 = 0$

a=_____b=_____c=____

Calculator Strategies:

- We can also try to use our calculator while testing to help us find solutions!
 - Use your table! We want to look for _____
 - Careful: Not all answers can be seen from the table.

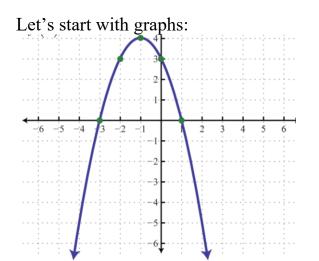
Example: $x^2 - x - 6$		
Solutions:	 	

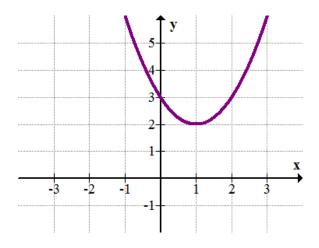
- Trace Feature: We can trace in our calculators to find where the x-intercepts are. We can then use those values to match- up our answer choices.
 - Steps:
 - $2^{nd} \rightarrow Trace$
 - Zero
 - Left Bound, Right Bound, Enter!

Example: $3x^2 - 5x - 15$

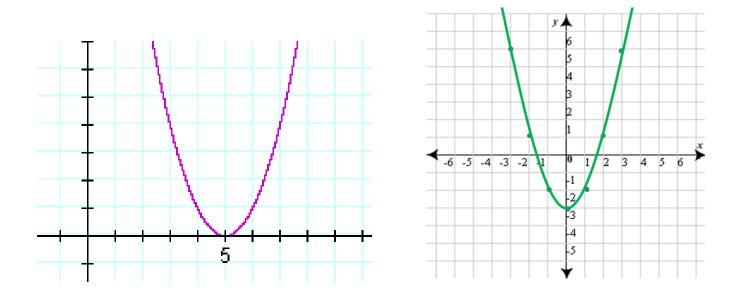
Solutions: _____

Types of solutions: We can look at our graph as well as the ______ of a quadratic to tell us the types of solutions! Let's take a look to see how this works!





!



Let's look at Discriminants! (Fancy way of using what we have in the quadratic formula!)

We will use: _____

	Discriminant	Type of Solution
1. $y = 3x^2 - 3x + 2$		
2. y= $x^2 - 10x + 1$		
3. $y=2x^2-16x+24$		
$4 - x - a^2 + 4a + 17$		
4. $y = x^2 + 4x + 17$		
5. $y = x^2 + 2x - 6$		
$3 \cdot y = x + 2x = 0$		
6. $y = 2x^2 - x - 3$		